Ein Ausdruck des Beitrags mit 31 Antworten ergibt bei 3 Antworten pro Seite ca. 11 DIN A4 Seiten. Das entspricht bei 80 g/m² ca. 54.89 Gramm Papier.
-- Veröffentlicht durch SchlitzerMcGourgh am 12:40 am 4. Aug. 2005
pythagoras --> Pita Gyros --> Gyros Pita Ich habe hunger :lol:
-- Veröffentlicht durch jogoman am 12:04 am 4. Aug. 2005
Zitat von Barry Burton um 19:52 am Aug. 1, 2005
Zitat von poschy um 19:34 am Aug. 1, 2005 Also.. könnte mir irgendwer eventuell helfen und mir das ausführlich erklären? "Ein Schiff fährt mit v1 = 36km/h senkrecht zur Strömung"
| lol?
| jop genau dachte ich mir auch grade...lol - geiles bild! :lol: :thumb:
-- Veröffentlicht durch DJ am 11:08 am 4. Aug. 2005
Bahnof :blubb:
-- Veröffentlicht durch kammerjaeger am 19:08 am 2. Aug. 2005
@ Jack Wenn es in einem anderen Winkel zum Ufer steuert, dann ist die effektive Geschwindigkeit sehr wohl langsamer (nämlich sqrt96m/sec statt 10m/sec), daher sind 51,03sec völlig korrekt. ;)
-- Veröffentlicht durch poschy am 19:06 am 2. Aug. 2005
is doch schnuppe :) kommt V res. so hin ? :)
-- Veröffentlicht durch Datenwurm am 19:05 am 2. Aug. 2005
Potagoras :lol:
-- Veröffentlicht durch poschy am 19:00 am 2. Aug. 2005
O_O fett jungs :) danke nochmal :) also zusammengefasst.. Zeit für überquerung ausrechnen Strecke Boot ausrechnen Strecke abtrieb ausrechnen Winkel mit potagoras ausrechnen wie schauts mit der resultierenden geschw. aus? Vres = Wurzel ( Vboot² + Vabtrieb²) right? (Geändert von poschy um 19:02 am Aug. 2, 2005)
-- Veröffentlicht durch Jack the Ripper am 18:53 am 2. Aug. 2005
Zitat von ErSelbst um 20:19 am Aug. 1, 2005 Das Schiff wird NICHT gebremst - es fährt mit seiner Geschwindigkeit und fertig! v1=36 km/h = 10m/sec v2=2m/sec s=500m t=s/v --> T= 500m / 10m/sec = 50sec
|
-- Veröffentlicht durch DinkPeTe am 18:38 am 2. Aug. 2005
Zitat von McK um 8:14 am Aug. 2, 2005 Winkel 11,53° (sinus ;)) Fahrzeit dann: 51,03sek :cu: McK
| ja, ihr dürft mich gerne schlagen, aber wie zum geier kommt ihr auf die Fahrtzeit????? :cry::cry::cry: :blubb:
-- Veröffentlicht durch mastaqz am 17:36 am 2. Aug. 2005
puh, das hätte ich nicht mal in der 11. hinbekommen, zum Glück hab ichs abgewählt^^
-- Veröffentlicht durch McK am 8:14 am 2. Aug. 2005
Winkel 11,53° (sinus ;)) Fahrzeit dann: 51,03sek :cu: McK
-- Veröffentlicht durch kammerjaeger am 23:35 am 1. Aug. 2005
Ich bin zwar schon sehr lange aus der Materie raus, aber mir schein der Ansatz von Beomaster logisch. Bei mir ist die Ankathete (a) auch sqrt96 und nicht sqrt104, wenn Gegenkathete (g) 2 und Hypothenuse (h) 10 sind. axa + gxg = hxh => axa = 100 - 4 = 96 => a = sqrt96 Ist ja auch logisch, denn wenn das Schiff nicht mehr orthogonal zum gegenüberliegenden Ufer zielt, braucht es länger (sqrt96m/sec statt 10m/sec Richtung anderes Ufer). ;) Nur mit der Umrechung in Winkel haperts bei mir, dafür bin ich doch zu lange raus und jetzt zu faul, Bücher zu wälzen... :lol:
-- Veröffentlicht durch MisterFQ am 22:48 am 1. Aug. 2005
ganz einfach du hast den pythagoras umgestellt brauchst du aber nicht... c ist bereits deine hypothenuse, mit der du in deinem sinus rumrechnen willst... also sqrt(104) nicht 96
-- Veröffentlicht durch Beomaster am 22:13 am 1. Aug. 2005
und was is mit meinen 11,778°? habsch was falsch gemacht? :noidea:
-- Veröffentlicht durch MisterFQ am 21:47 am 1. Aug. 2005
ne haben wir nicht *g* nicht nur mir auch creon ist der fehler unterlaufen...wenn das boot im 90° winkel zum ufer fährt wird es mit 11,3° abgetrieben. richtig. mit dem winkel kann man aber nicht entgegensteuern. weil wenn man das boot dreht ist nicht mehr die geschwindigkeit die Ankathete des imaginären dreiecks sondern die Hypothenuse. also ist der winkel der asin also 11,53°
-- Veröffentlicht durch Datenwurm am 21:25 am 1. Aug. 2005
Nu hammers aber! wenn ich das in der 8ten (Ok bald 9ten) Klasse lösen kann wenn auch über umwege sollte das jeder andere auch schaffen:blubb:
-- Veröffentlicht durch CREON am 21:23 am 1. Aug. 2005
Also ich finde die Aufgabe nicht so wirklich schwer! Das Schiff fährt SENKRECHT = 90° zur Strömungsrichtung über den Fluß, also beispielsweise eine Fähre. Mit 36 km/h legt es 10 meter / sec zurück. Benötigt also für 500 Meter 50 Sekunden! Das Schiff wird in diesen 50 sek um 50 * 2 m/s abgetrieben, also um 100 Meter! Es legt also 500 Meter geradeaus und 100 Meter in Flußrichtung zurück. Der daraus resultierende Winkel (den man in negativer Form gegensteuern muß) ist der arcustangens! Nämlich die Gegenkathete durch die Ankathete. Und der arcustangens von 100 / 500 ist 11,31°
-- Veröffentlicht durch Beomaster am 21:05 am 1. Aug. 2005
Tangens? Was is das? Kann man das essen? :lol:
-- Veröffentlicht durch MisterFQ am 20:58 am 1. Aug. 2005
man kanns auch kompliziert... schonmal was vom tangens gehöhrt :thumb: winkel = atan(2/10)
-- Veröffentlicht durch Beomaster am 20:27 am 1. Aug. 2005
wie war das? c=sqrt(sqr(a)+sqr(b)) umstellen einsetzen b=sqrt(sqr(10)-sqr(2)) also sqrt(96)~9,798 und dann ham wir arcsin(2/sqrt(96))=11,778° :godlike:
-- Veröffentlicht durch MisterFQ am 20:20 am 1. Aug. 2005
jop... der winkel ist ürbigens 11,3 grad. das kann man fast im kopf.
-- Veröffentlicht durch Beomaster am 20:19 am 1. Aug. 2005
Zitat von poschy um 19:34 am Aug. 1, 2005 Also.. könnte mir irgendwer eventuell helfen und mir das ausführlich erklären? Ein Schiff fährt mit v1 = 36km/h senkrecht zur Strömung eines 500m breiten Flusses dessen Strömungsgeschw. v2 = 2 m/s beträgt .. Welche Zeit benötigt das Schiff ? Um welche strecke wird das schiff abgetrieben? Unter welchem Winkel könnte das schiff das Abtreiben verhindern? Zeichnen sie das Diagramm! Thx =)
| Das Schiff fährt mit 10m/s mehr ist für die Zeit erstmal nicht nötig, denn bei 500m macht das 50s in den 50s wird das Schiff pro Sekunde um 2m abgetrieben, was am Ende auf 100m hinaus läuft. das mit dem Winkel ist gar nicht so schwer, gesucht ist ein Rechtwinkliges Dreieck dessen Hypotenuse eine Länge von 10 besitzt (v vom Boot) und eine Kathete von 2 (v Fluß) habs ma kurz aufgemalt, links der Fall ohne Gegensteuern, rot: in die Richtung schieb der Motor das Schiff mit 10m/s blau: in die Richtung drängt der Fluß das Schiff mit 2m/s ab gelb: die Resultierende Ziel ist es jetzt das die Resultierende (gelb) senkrecht zum Ufer steht, dazu muß das Schiff mit einem Winkel gegen die Strömung gedreht werden das sich die 10m/s vom Schiff in eine Komponente senkrecht zum Ufer zerlegt, und in eine Komponente die Gegen die Strömung wirkt mit 2m/s (beide Orange)...
-- Veröffentlicht durch ErSelbst am 20:19 am 1. Aug. 2005
Zitat von eskimo um 20:02 am Aug. 1, 2005 Also, das mit dem Winkel ist ja komisch.... Das mit dem Diagramm auch. Wer stellt solche Aufgaben? Ich vermute mal, dass es so gemeint ist, dass das Schiff ne Art "Fähre" ist, die den Fluss überqueren muss. Also sollst du berechnen, in welchem Winkel das Schiff steuern müsste, um genau auf der anderen Seite des Ufers anzukommen. Verstanden? Wie man es berechnet weis ich im Moment leider auch nicht, bräuchte da einige Formelsammlungen etc... Ich kenne mich mit Wiederständen sowie allem andern physikalischen Zeugs aus, aber so Geschwindigkeitsrechnungen liegen mir einfach nicht. -> Physik ist im übrigen eigentlich immer "logisch". Nicht so abstrakt wie Mathe. Physik muss man nur verstehen, für Mathe braucht man Talent und Übung!
| Physik ist logisch?! Zeit krümmen rulez ;) Egal .. Zur Aufgabe: Das Schiff wird NICHT gebremst - es fährt mit seiner Geschwindigkeit und fertig! v1=36 km/h = 10m/sec v2=2m/sec s=500m t=s/v --> T= 500m / 10m/sec = 50sec und die Strecke, die es abgetrieben wird: v2=10m/s t=50sec s = v2 * t --> s = 2 m/sec * 50 sec = 100m den Winkel bekommste mit Pytagoras raus - zu faul zm Rechnen
-- Veröffentlicht durch Datenwurm am 20:13 am 1. Aug. 2005
:lol: @ Berry Echt geil:thumb:
Der gegunktete Weg wäre der wenn abgetrieben wird. der mittlere schwarze weg wäre der gewollte weg, aber hier ist die strömung net dabei. der linke Rot_Gelbe weg muss gefahren werden damit man genau gegenüber vom ausgangspunkt ans Ufer gelangt. Den winkel kanste auch selber ausrechnen:blubb:
-- Veröffentlicht durch quake34ever am 20:04 am 1. Aug. 2005
habe ich das etwa nicht logisch gemacht? :noidea: könnte sein, aber dann ist die aufgabenstellung bisschen falsch, odeR?
-- Veröffentlicht durch eskimo am 20:02 am 1. Aug. 2005
Also, das mit dem Winkel ist ja komisch.... Das mit dem Diagramm auch. Wer stellt solche Aufgaben? Ich vermute mal, dass es so gemeint ist, dass das Schiff ne Art "Fähre" ist, die den Fluss überqueren muss. Also sollst du berechnen, in welchem Winkel das Schiff steuern müsste, um genau auf der anderen Seite des Ufers anzukommen. Verstanden? Wie man es berechnet weis ich im Moment leider auch nicht, bräuchte da einige Formelsammlungen etc... Ich kenne mich mit Wiederständen sowie allem andern physikalischen Zeugs aus, aber so Geschwindigkeitsrechnungen liegen mir einfach nicht. -> Physik ist im übrigen eigentlich immer "logisch". Nicht so abstrakt wie Mathe. Physik muss man nur verstehen, für Mathe braucht man Talent und Übung!
-- Veröffentlicht durch quake34ever am 20:01 am 1. Aug. 2005
ich habe doch gesagt ohne formel kann ich nichts machen und die müsste er ja irgendwo :lol: stehen haben, oder? Da ich im Moment nicht zuhause bin, konnte ich leider nicht mal eben in mein Physikbuch gucken.
-- Veröffentlicht durch MisterFQ am 19:55 am 1. Aug. 2005
das ding brauch 50 sekunden. v=s/t. ds sollte man aber noch hinbekommen... wenns waagerecht fährt. :lolaway: wird halt nur abgetrieben... (Geändert von MisterFQ um 19:56 am Aug. 1, 2005) (Geändert von MisterFQ um 19:58 am Aug. 1, 2005)
-- Veröffentlicht durch quake34ever am 19:52 am 1. Aug. 2005
Was ich hier schreibe, ist alles nur Vermutung, aber könnte evtl richtig sein :lol: Hab nämlich keine Ahnung, ob es eine Formel gibt oder nicht und wenn ja, müsste die sich ja in deinen Unterlagen befinden. Also die Geschwindigkeit des Schiffes beträgt 10m / sek (Erklärt sich von alleine, oder?) Durch die Strömung des Flusses wird das Schiff aber auf 8m / sek abgebremst. (wenn richtig, ist das auch klar, oder?) 500m / 8m pro sekunde = 62,5 sekunden zeit also 62,5 sekunden abtrieb: 2m / sek das macht bei 62,5 sekunden 125 meter. vielleicht ist das ja auch richtig. was mti winkel gemeint ist, kann ich dir nicht sagen. soll das boot etwa um 90° gedreht sich den fluss hinauf bewegen :blubb::lol: und mit diagrammen habe ich selbst theoretisch nichts am hut :lolaway: :ultragoil: @ Barry :thumb: (Geändert von quake34ever um 19:54 am Aug. 1, 2005)
-- Veröffentlicht durch Barry Burton am 19:52 am 1. Aug. 2005
Zitat von poschy um 19:34 am Aug. 1, 2005 Also.. könnte mir irgendwer eventuell helfen und mir das ausführlich erklären? "Ein Schiff fährt mit v1 = 36km/h senkrecht zur Strömung"
| lol?
-- Veröffentlicht durch poschy am 19:34 am 1. Aug. 2005
Also.. könnte mir irgendwer eventuell helfen und mir das ausführlich erklären? Ein Schiff fährt mit v1 = 36km/h senkrecht zur Strömung eines 500m breiten Flusses dessen Strömungsgeschw. v2 = 2 m/s beträgt .. Welche Zeit benötigt das Schiff ? Um welche strecke wird das schiff abgetrieben? Unter welchem Winkel könnte das schiff das Abtreiben verhindern? Zeichnen sie das Diagramm! Thx =)
|